Second-order Differential Equations, Exponential Maps, and Nonlinear Connections
نویسنده
چکیده
The main purpose of this article is to introduce a comprehensive, unified theory of the geometry of all connections. We show that one can study any connection via a certain, closely associated second-order differential equation. One of the most important tools is our extended Ambrose-PalaisSinger correspondence. We extend the theory of geodesic sprays to arbitrary second-order differential equations, show that locally diffeomorphic exponential maps can be defined for any of them, and give a full theory of (possibly nonlinear) covariant derivatives for (possibly nonlinear) connections. In the process, we introduce vertically homogeneous connections. Unlike homogeneous connections, these complete our theory and allow us to include Finsler spaces among the applications. MSC(1991): Primary 53C15; Secondary 53C22, 58E10. −−−−−−−−−−−−−−−−−−−−−−−−−−→Υ⌣· ∞·←−−−−−−−−−−−−−−−−−−−−−−−−−−
منابع مشابه
Ehresmann Connections, Exponential Maps, and Second-order Differential Equations
The main purpose of this article is to introduce a comprehensive, unified theory of the geometry of all connections. We show that one can study a connection via a certain, closely associated second-order differential equation. One of the most important results is our extended Ambrose-Palais-Singer correspondence. We extend the theory of geodesic sprays to certain second-order differential equat...
متن کاملGeometry of Nonlinear Connections
We show that locally diffeomorphic exponential maps can be defined for any second-order differential equation, and give a (possibly nonlinear) covariant derivative for any (possibly nonlinear) connection. We introduce vertically homogeneous connections as the natural correspondents of homogeneous second-order differential equations. We provide significant support for the prospect of studying no...
متن کاملSecond-order Differential Equations and Nonlinear Connections
The main purposes of this article are to extend our previous results on homogeneous sprays [15] to arbitrary secondorder differential equations, to show that locally diffeomorphic exponential maps can be defined for any of them, and to give a (possibly nonlinear) covariant derivative for any (possibly nonlinear) connection. In the process, we introduce vertically homogeneous connections. Unlike...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملRecurrent metrics in the geometry of second order differential equations
Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...
متن کامل